

PART A
Answer ALL the questions

1. What is Zener diode?
2. What is a depletion layer?
3. What is the output voltage of a summing amplifier when $\mathrm{V} 1=2 \mathrm{~V}, \mathrm{~V} 2=1 \mathrm{~V}, \mathrm{R} 1=10 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$, $R f=10 \mathrm{k} \Omega$.
4. State any four properties of an ideal Op-amp
5. Simplify using K-map $F(A, B, C)=\sum(0,2,4,6,7)$
6. What is a half adder?
7. What is a flip flop?
8. What are shift registers? Name the types
9. Write the difference between main memory and auxiliary memory.
10. State two differences between RAM and ROM
PART - B

Answer any FOUR questions
11. Write short notes on (i) intrinsic semiconductor (ii) extrinsic semiconductors (iii) PN junction diode
12. Explain the working of a summing amplifier with a neat diagram
13. a) Define Multiplexer.
b) Explain 4-1 multiplexer with logic circuit
14. With a neat diagram explain the working of a clocked RS flip-flop.
15. Name and explain the different types of registers in a computer.

PART - C

Answer any FOUR questions
$(4 \times 12.5=50)$
16. Describe the operation of a NPN transistor in common emitter mode. Obtain the input and output characteristics for the same.
17. Explain with a neat diagram the working of a successive approximation A / D convertor
18. a) Simplify using K-map, $F(A, B, C, D)=$ _ $(3,4,6,7,11,12,13,14,15)$
b) Simplify $Y=[A B(C+B D)+A B] C$
19. a) Explain the shift right shift register with a neat diagram
b) How can we convert a JK Flip flop into (i) D flip flop (ii) T-Flip flop?
20. a) Explain the various components in memory hierarchy using block diagrams
b) Discuss in detail about Timing \& control in a digital computer.

